skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pérez-Aros, Pedro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper addresses the study of a new class of nonsmooth optimization prob lems, where the objective is represented as a difference of two generally nonconvex functions. We propose and develop a novel Newton-type algorithm to solving such problems, which is based on the coderivative generated second-order subdifferential (generalized Hessian) and employs advanced tools of variational analysis. Well posedness properties of the proposed algorithm are derived under fairly general requirements, while constructive convergence rates are established by using additional assumptions including the Kurdyka–Łojasiewicz condition. We provide applications of the main algorithm to solving a general class of nonsmooth nonconvex problems of structured optimization that encompasses, in particular, optimization problems with explicit constraints. Finally, applications and numerical experiments are given for solving practical problems that arise in biochemical models, supervised learning, constrained quadratic programming, etc., where advantages of our algorithms are demonstrated in comparison with some known techniques and results. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026